Wednesday, 4 January 2017

IEEE 2016 : STAMP: Enabling Privacy-Preserving Location Proofs for Mobile Users


IEEE 2016 Transaction on Networking

Abstract:Location-based services are quickly becoming immensely popular. In addition to services based on users' current location, many potential services rely on users' location history, or their spatial-temporal provenance. Malicious users may lie about their spatial-temporal provenance without a carefully designed security system for users to prove their past locations. In this paper, we present the Spatial-Temporal provenance Assurance with Mutual Proofs (STAMP) scheme. STAMP is designed for ad-hoc mobile users generating location proofs for each other in a distributed setting. However, it can easily accommodate trusted mobile users and wireless access points. STAMP ensures the integrity and non-transferability of the location proofs and protects users' privacy. A semi-trusted Certification Authority is used to distribute cryptographic keys as well as guard users against collusion by a light-weight entropy-based trust evaluation approach. Our prototype implementation on the Android platform shows that STAMP is low-cost in terms of computational and storage resources. Extensive simulation experiments show that our entropy-based trust model is able to achieve high collusion detection accuracy.



IEEE 2016 : FRAppE: Detecting Malicious Facebook Applications

IEEE 2016 Transaction on Networking

Abstract:With 20 million installs a day [1], third-party apps are a major reason for the popularity and addictiveness of Facebook. Unfortunately, hackers have realized the potential of using apps for spreading malware and spam. The problem is already significant, as we find that at least 13% of apps in our dataset are malicious. So far, the research community has focused on detecting malicious posts and campaigns.In this paper, we ask the question: given a Facebook application,can we determine if it is malicious? Our key contribution is in developing FRAppE—Facebook’s Rigorous Application Evaluator—arguably the first tool focused on detecting malicious apps on Facebook. To develop FRAppE, we use information gathered by observing the posting behavior of 111K Facebook apps seen across 2.2 million users on Facebook. First, we identify a set of features that help us distinguish malicious apps from benign ones. For example, we find that malicious apps often share names with other apps, and they typically request fewer permissions than benign apps. Second, leveraging these distinguishing features, we show that FRAppE can detect malicious apps with 99.5% accuracy, with no false positives and a low false negative rate (4.1%). Finally, we explore the ecosystem of malicious Facebook apps and identify mechanisms that these apps use to propagate. Interestingly, we find that many apps collude and support each other; in our dataset, we find 1,584 apps enabling the viral propagation of 3,723 other apps through their posts. Long-term, we see FRAppE as a step towards creating an independent watchdog for app assessment and ranking, so as to warn Facebook users before installing apps.


IEEE 2016 : Toward Optimum Crowdsensing Coverage With Guaranteed Performance

IEEE 2016 Transaction on Networking

Abstract:Mobile crowdsensing networks have emerged to show elegant data collection capability in loosely cooperative network. However, in the sense of coverage quality, marginal works have considered the efficient (less participants) and effective (more coverage) designs for mobile crowdsensing network. We investigate the optimal coverage problem in distributed crowdsensing networks. In that, the sensing quality and the information delivery are jointly considered. Different from the conventional coverage problem, ours only select a subset of mobile users, so as to maximize the crowdsensing coverage with limited budget. We formulate our concerns as an optimal crowdsensing coverage problem, and prove its NP-completeness. In tackling this difficulty, we also prove the submodular property in our problem. Leveraging the favorable property in submodular optimization, we present the greedy algorithm with approximationratio O(√k), where k is the number of selected users. Such that the information delivery and sensing coverage ratio could be guaranteed. Finally, we make extensive evaluations for the proposed scheme, with trace-driven tests. Evaluation results show that the proposed scheme could outperform the random selection by 2× with a random walk model, and over 3× with real trace data, in terms of crowdsensing coverage. Besides, the proposed scheme achieves near optimal solution comparing with the bruteforce search results.

No comments:

Post a Comment