Wednesday, 20 November 2013

IEEE 2013: DRINA: A Lightweight and Reliable Routing Approach for In-Network Aggregation in Wireless Sensor Networks

IEEE 2013 Transactions on Computers

Technology - Available in Java

Abstract—Large scale dense Wireless Sensor Networks (WSNs) will be increasingly deployed in different classes of applications for accurate monitoring. Due to the high density of nodes in these networks, it is likely that redundant data will be detected by nearby nodes when sensing an event. Since energy conservation is a key issue in WSNs, data fusion and aggregation should be exploited in order to save energy. In this case, redundant data can be aggregated at intermediate nodes reducing the size and number of exchanged  messages and, thus, decreasing communication costs and energy consumption. In this work, we propose a novel Data Routing for In-Network Aggregation, called DRINA, that has some key aspects such as a reduced number of messages for setting up a routing tree, maximized number of overlapping routes, high aggregation rate, and reliable data aggregation and transmission. The proposed DRINA algorithm was extensively compared to two other known solutions: the Information Fusion-based Role Assignment (InFRA) and Shortest Path Tree (SPT) algorithms. Our results indicate clearly that the routing tree built by DRINA provides the best aggregation quality when compared to these other algorithms. The obtained results show that our proposed solution outperforms these solutions in different scenarios and in different key aspects required by WSNs

IEEE 2013 :Community-Aware Opportunistic Routing in Mobile Social Networks

IEEE 2013 Transactions on Computers

Technology - Available in Java

Abstract—Mobile social networks (MSNs) are a kind of delay tolerant network that consists of lots of mobile nodes with social characteristics. Recently, many social-aware algorithms have been proposed to address routing problems in MSNs. However, these algorithms tend to forward messages to the nodes with locally optimal social characteristics, and thus cannot achieve the optimal performance. In this paper, we propose a distributed optimal Community-Aware Opportunistic Routing (CAOR) algorithm. Our main contributions are that we propose a home-aware community model, whereby we turn an MSN into a network that only includes community homes. We prove that, in the network of community homes, we still can compute the minimum expected delivery delays of nodes through a reverse Dijkstra algorithm and achieve the optimal opportunistic routing performance. Since the number of communities is far less than the number of nodes in magnitude, the computational cost and maintenance cost of contact information are greatly reduced. We demonstrate how our algorithm significantly outperforms the previous ones through extensive simulations, based on a real MSN trace and a synthetic MSN trace

IEEE 2023: WEB SECURITY OR CYBER CRIME

  IEEE 2023:   Machine Learning and Software-Defined Networking to Detect DDoS Attacks in IOT Networks Abstract:   In an era marked by the r...