IEEE 2018 / 19 - Artificial Intelligence

IEEE 2017: Efficient Processing of Skyline Queries Using MapReduce

Abstract: The skyline operator has attracted considerable attention recently due to its broad applications. However, computing a skyline is challenging today since we have to deal with big data. For data-intensive applications, the MapReduce framework has been widely used recently. In this paper, we propose the efficient parallel algorithm SKY-MR+ for processing skyline queries using MapReduce. We first build a quadtree-based histogram for space partitioning by deciding whether to split each leaf node judiciously based on the benefit of splitting in terms of the estimated execution time. In addition, we apply the dominance power filtering method to effectively prune non-skyline points in advance. We next partition data based on the regions divided by the quadtree and compute candidate skyline points for each partition using MapReduce. Finally, we check whether each skyline candidate point is actually a skyline point in every partition using MapReduce. We also develop the workload balancing methods to make the estimated execution times of all available machines to be similar. We did experiments to compare SKY-MR+ with the state-of-the-art algorithms using MapReduce and confirmed the effectiveness as well as the scalability of SKY-MR+.



IEEE 2017: NetSpam: a Network-based Spam Detection Framework for Reviews in Online Social Media
Abstract: Nowadays, a big part of people rely on available content in social media in their decisions (e.g. reviews and feedback on a topic or product).The possibility that anybody can leave a review provide a golden opportunity for spammers to write spam reviews about products and services for different interests. Identifying these spammers and the spam content is a hot topic of research and although a considerable number of studies have been done recently toward this end, but so far the methodologies put forth still barely detect spam reviews, and none of them show the importance of each extracted feature type. In this study, we propose a novel framework, named NetSpam, which utilizes spam features for modeling review datasets as heterogeneous information networks to map spam detection procedure into a classification problem in such networks. Using the importance of spam features help us to obtain better results in terms of different metrics experimented on real-world review datasets from Yelp and Amazon websites. The results show that NetSpam outperforms the existing methods and among four categories of features; including review-behavioral, user-behavioral, reviewlinguistic, user-linguistic, the first type of features performs better than the other categories.

IEEE 2017: Practical Privacy-Preserving MapReduce Based K-means Clustering over Large-scale Dataset
Abstract: Clustering techniques have been widely adopted in many real world data analysis applications, such as customer behavior analysis, targeted marketing, digital forensics, etc. With the explosion of data in today’s big data era, a major trend to handle a clustering over large-scale datasets is outsourcing it to public cloud platforms. This is because cloud computing offers not only reliable services with performance guarantees, but also savings on in-house IT infrastructures. However, as datasets used for clustering may contain sensitive information, e.g., patient health information, commercial data, and behavioral data, etc, directly outsourcing them to public cloud servers inevitably raise privacy concerns. In this paper, we propose a practical privacy-preserving Kmeans clustering scheme that can be efficiently outsourced to cloud servers. Our scheme allows cloud servers to perform clustering directly over encrypted datasets, while achieving comparable computational complexity and accuracy compared with clusterings over unencrypted ones. We also investigate secure integration of MapReduce into our scheme, which makes our scheme extremely suitable for cloud computing environment. Thorough security analysis and numerical analysis carry out the performance of our scheme in terms of security and efficiency. Experimental evaluation over a 5 million objects dataset further validates the practical performance of our scheme.

IEEE 2017: SocialQ&A: An Online Social Network Based Question and Answer System
Abstract: Question and Answer (Q&A) systems play a vital role in our daily life for information and knowledge sharing. Users post questions and pick questions to answer in the system. Due to the rapidly growing user population and the number of questions, it is unlikely for a user to stumble upon a question by chance that (s)he can answer. Also, altruism does not encourage all users to provide answers, not to mention high quality answers with a short answer wait time. The primary objective of this paper is to improve the performance of Q&A systems by actively forwarding questions to users who are capable and willing to answer the questions. To this end, we have designed and implemented SocialQ&A, an online social network based Q&A system. SocialQ&A leverages the social network properties of common-interest and mutual-trust friend relationship to identify an asker through friendship who are most likely to answer the question, and enhance the user security. We also improve SocialQ&A with security and efficiency enhancements by protecting user privacy and identifies, and retrieving answers automatically for recurrent questions. We describe the architecture and algorithms, and conducted comprehensive large-scale simulation to evaluate SocialQ&A in comparison with other methods. Our results suggest that social networks can be leveraged to improve the answer quality and asker’s waiting time. We also implemented a real prototype of SocialQ&A, and analyze the Q&A behavior of real users and questions from a small-scale real-world SocialQ&A system.

IEEE 2017: Authorship Attribution for Social Media Forensics
Abstract: The veil of anonymity provided by smartphones with pre-paid SIM cards, public Wi-Fi hotspots, and distributed networks like Tor has drastically complicated the task of identifying users of social media during forensic investigations. In some cases, the text of a single posted message will be the only clue to an author’s identity. How can we accurately predict who that author might be when the message may never exceed 140 characters on a service like Twitter? For the past 50 years, linguists, computer scientists and scholars of the humanities have been jointly developing automated methods to identify authors based on the style of their writing. All authors possess peculiarities of habit that influence the form and content of their written works. These characteristics can often be quantified and measured using machine learning algorithms. In this article, we provide a comprehensive review of the methods of authorship attribution that can be applied to the problem of social media forensics. Further, we examine emerging supervised learningbased methods that are effective for small sample sizes, and provide step-by-step explanations for several scalable approaches as instructional case studies for newcomers to the field. We argue that there is a significant need in forensics for new authorship attribution algorithms that can exploit context, can process multimodal data, and are tolerant to incomplete knowledge of the space of all possible authors at training time.

IEEE 2017: Detecting and Analyzing Urban Regions with High Impact of Weather Change on Transport
Abstract: In this work, we focus on two fundamental questions that are unprecedentedly important to urban planners to understand the functional characteristics of various urban regions throughout a city, namely, (i) how to identify regional weather-traffic sensitivity index throughout a city, that indicates the degree to which the region traffic in a city is impacted by weather changes; (ii) among complex regional features, such as road structure and population density, how to dissect the most influential regional features that drive the urban region traffic to be more vulnerable to weather changes. However, these two questions are nontrivial to answer, because urban traffic changes dynamically over time and is essentially affected by many other factors, which may dominate the overall impact. We make the first study on these questions, by developing a weather-traffic index (WTI) system. The system includes two main components: weather-traffic index establishment and key factor analysis. Using the proposed system, we conducted comprehensive empirical study in Shanghai, and the weather-traffic indices extracted have been validated to be surprisingly consistent with real world observations. Further regional key factor analysis yields interesting results. For example, house age has significant impact on the weather-traffic index, which sheds light on future urban planning and reconstruction.

IEEE 2017: SociRank: Identifying and Ranking Prevalent News Topics Using Social Media Factors
Abstract: Mass media sources, specifically the news media, have traditionally informed us of daily events. In modern times, social media services such as Twitter provide an enormous amount of user-generated data, which have great potential to contain informative news-related content. For these resources to be useful, we must find a way to filter noise and only capture the content that, based on its similarity to the news media, is considered valuable. However, even after noise is removed, information overload may still exist in the remaining data—hence, it is convenient to prioritize it for consumption. To achieve prioritization, information must be ranked in order of estimated importance considering three factors. First, the temporal prevalence of a particular topic in the news media is a factor of importance, and can be considered the media focus (MF) of a topic. Second, the temporal prevalence of the topic in social media indicates its user attention (UA). Last, the interaction between the social media users who mention this topic indicates the strength of the community discussing it, and can be regarded as the user interaction (UI) toward the topic. We propose an unsupervised framework—SociRank—which identifies news topics prevalent in both social media and the news media, and then ranks them by relevance using their degrees of MF, UA, and UI. Our experiments show that SociRank improves the quality and variety of automatically identified news topics.


IEEE 2017: RAPARE: A Generic Strategy for Cold-Start Rating Prediction Problem

Abstract: In recent years, recommender system is one of indispensable components in many e-commerce websites. One of the major challenges that largely remains open is the cold-start problem, which can be viewed as a barrier that keeps the cold-start users/items away from the existing ones. In this paper, we aim to break through this barrier for cold-start users/items by the assistance of existing ones. In particular, inspired by the classic Elo Rating System, which has been widely adopted in chess tournaments; we propose a novel rating comparison strategy (RAPARE) to learn the latent profiles of cold-start users/items. The center-piece of our RAPARE is to provide a fine-grained calibration on the latent profiles of cold-start users/items by exploring the differences between cold-start and existing users/items. As a generic strategy, our proposed strategy can be instantiated into existing methods in recommender systems. To reveal the capability of RAPARE strategy, we instantiate our strategy on two prevalent methods in recommender systems, i.e., the matrix factorization based and neighborhood based collaborative filtering. Experimental evaluations on five real data sets validate the superiority of our approach over the existing methods in cold-start scenario. 








No comments:

Post a Comment

IEEE 2023: WEB SECURITY OR CYBER CRIME

  IEEE 2023:   Machine Learning and Software-Defined Networking to Detect DDoS Attacks in IOT Networks Abstract:   In an era marked by the r...