Wednesday, 15 July 2015

IEEE 2015 : Privacy-Preserving Detection of Sensitive Data Exposure

Abstract:Statistics from security firms, research institutions and government organizations show that the number of data-leak instances have grown rapidly in recent years. Among various data-leak cases, human mistakes are one of the main causes of data loss. There exist solutions detecting inadvertent sensitive data leaks caused by human mistakes and to provide alerts for organizations. A common approach is to screen content in storage and transmission for exposed sensitive information. Such an approach usually requires the detection operation to be conducted in secrecy. However, this secrecy requirement is challenging to satisfy in practice, as detection servers may be compromised or outsourced. In this paper, we present a privacypreserving data-leak detection (DLD) solution to solve the issue where a special set of sensitive data digests is used in detection. The advantage of our method is that it enables the data owner to safely delegate the detection operation to a semihonest provider without revealing the sensitive data to the provider. We describe how Internet service providers can offer their customers DLD as an add-on service with strong privacy guarantees. The evaluation results show that our method can support accurate detection with very small number of false alarms under various data-leak scenarios.

IEEE 2015: An Energy-Efficient and Delay-Aware Wireless Computing System for Industrial Wireless Sensor Networks
Abstract: Industrial wireless sensor networks have attracted much attention as a cornerstone to making the smart factories real. Utilizing industrial wireless sensor networks as a base for smart factories makes it possible to optimize the production line without human resources since it provides industrial Internet of Things (IoT) service, where various types of data are collected from sensors and mined to control the machines based on the analysis result. On the other hand, a fog computing node, which executes such real-time feedback control, should be capable of real-time data collection, management, and processing. To achieve these requirements, in this paper, we introduce Wireless Computing System (WCS) as a fog computing node. Since there are a lot of servers and each server has 60 GHz antennas to connect to other servers and sensors, WCS has high collecting and processing capabilities. However, in order to fulfill a demand for real-time feedback control, WCS needs to satisfy an acceptable delay for data collection. Additionally, lower power consumption is required in order to reduce the cost for factory operation. Therefore, we propose an Energy-Efficient and Delay-Aware Wireless Computing System (E2DA-WCS). Since there is a tradeoff relationship between the power consumption and the delay for data collection, our proposed system controls the sleep schedule and the number of links to minimize the power consumption while satisfying an acceptable delay constraint. Furthermore, the effectiveness of our proposed system is evaluated through extensive computer simulations.

IEEE 2015: Cost-Effective Authentic and Anonymous Data Sharing with Forward Security
AbstractData sharing has never been easier with the advances of cloud computing, and an accurate analysis on the shared data provides an array of benefits to both the society and individuals. Data sharing with a large number of participants must take into account several issues, including efficiency, data integrity and privacy of data owner. Ring signature is a promising candidate to construct an anonymous and authentic data sharing system. It allows a data owner to anonymously authenticate his data which can be put into the cloud for storage or analysis purpose. Yet the costly certificate verification in the traditional public key infrastructure (PKI) setting becomes a bottleneck for this solution to be scalable. Identity-based (ID-based) ring signature, which eliminates the process of certificate verification, can be used instead. In this paper, we further enhance the security of ID-based ring signature by providing forward security: If a secret key of any user has been compromised, all previous generated signatures that include this user still remain valid. This property is especially important to any large scale data sharing system, as it is impossible to ask all data owners to reauthenticate their data even if a secret key of one single user has been compromised. We provide a concrete and efficient instantiation of our scheme, prove its security and provide an implementation to show its practicality.

IEEE 2015 : k Nearest Neighbor Search for Location-Dependent Sensor Data in MANETs
Abstract:K nearest neighbor (kNN) queries, which retrieve the k nearest sensor data items associated with a location (location-dependent sensor data) from the location of the query issuer, are useful for location-based services (LBSs) in mobile environments. Here, we focus on kNN query processing in mobile ad hoc networks (MANETs). Key challenges in designing system protocols for MANETs include low-overhead adaptability to network topology changes due to node mobility, and query processing that achieves high accuracy of the query result without a centralized server. In this paper, we propose the Filling Area (FA) method to efficiently process kNN queries in MANETs. The FA method achieves low overhead in query processing by reducing a search area. In the FA method, data items remain at nodes near the locations with which the items are associated, and nodes cache data items whose locations are near their own so that the query issuer retrieves kNNs from nearby nodes. Through extensive simulations, we verify that our proposed approach achieves low overhead and high accuracy of the query result.

IEEE 2015 : The Mason Test: A Defense Against Sybil Attacks in Wireless Networks Without Trusted Authorities

IEEE 2015 Transactions on Parallel and Distributed Systems 

 Abstract : Wireless networks are vulnerable to Sybil attacks, in which a malicious node poses as many identities in order to gain disproportionate influence. Many defenses based on spatial variability of wireless channels exist, but depend either on detailed, multi-tap channel estimation—something not exposed on commodity 802.11 devices—or valid RSSI observations from multiple trusted sources, e.g., corporate access points—something not directly available in ad hoc and delay-tolerant networks with potentially malicious neighbors. We extend these techniques to be practical for wireless ad hoc networks of commodity 802.11 devices. Specifically, we propose two efficient methods for separating the valid RSSI observations of behaving nodes from those falsified by malicious participants. Further, we note that prior signalprint methods are easily defeated by mobile attackers and develop an appropriate challenge-response defense. Finally, we present the Mason test, the first implementation of these techniques for ad hoc and delay-tolerant networks of commodity 802.11 devices. We illustrate its performance in several real-world scenarios.

IEEE 2015 : Secure and Distributed Data Discovery and Dissemination in Wireless Sensor Networks

IEEE 2015 Transactions on Parallel and Distributed Systems 

Abstract : A data discovery and dissemination protocol for wireless sensor networks (WSNs) is responsible for updating configuration parameters of, and distributing management commands to, the sensor nodes. All existing data discovery and dissemination protocols suffer from two drawbacks. First, they are based on the centralized approach; only the base station can distribute data item. Such an approach is not suitable for emergent multi-owner-multi-user WSNs. Second, those protocols were not designed with security in mind and hence adversaries can easily launch attacks to harm the network. This paper proposes the first secure and distributed data discovery and dissemination protocol named DiDrip. It allows the network owners to authorize multiple network users with different privileges to simultaneously and directly disseminate data items to the sensor nodes. Moreover, as demonstrated by our theoretical analysis, it addresses a number of possible security vulnerabilities that we have identified. Extensive security analysis show DiDrip is provably secure. We also implement DiDrip in an experimental network of resource-limited sensor nodes to show its high efficiency in practice.

IEEE 2015 : Automatic Face Naming by Learning Discriminative Affinity Matrices From Weakly Labeled Images

IEEE 2015 TRANSACTIONS ON IMAGE PROCESSING

Abstract : Given a collection of images, where each image contains several faces and is associated with a few names in the corresponding caption, the goal of face naming is to infer the correct name for each face. In this paper, we propose two new methods to effectively solve this problem by learning two discriminative affinity matrices from these weakly labeled images. We first propose a new method called regularized low-rank representation by effectively utilizing weakly supervised information to learn a low-rank reconstruction coefficient matrix while exploring multiple subspace structures of the data. Specifically, by introducing a specially designed regularizer to the low-rank representation method, we penalize the corresponding reconstruction coefficients related to the situations where a face is reconstructed by using face images from other subjects or by using itself. With the inferred reconstruction coefficient matrix, a discriminative affinity matrix can be obtained. Moreover, we also develop a new distance metric learning method called ambiguously supervised structural metric learning by using weakly supervised information to seek a discriminative distance metric. Hence, another discriminative affinity matrix can be obtained using the similarity matrix (i.e., the kernel matrix) based on the Mahalanobis distances of the data. Observing that these two affinity matrices contain complementary information, we further combine them to obtain a fused affinity matrix, based on which we develop a new iterative scheme to infer the name of each face. Comprehensive experiments demonstrate the effectiveness of our approach.

IEEE 2015 : Query Aware Determinization of Uncertain Objects

IEEE 2015 TRANSACTIONS ON IMAGE PROCESSING

Abstract :The determinizing probabilistic data to enable such data to be stored in legacy systems that accept only deterministic input. Probabilistic data may be generated by automated data analysis/enrichment techniques such as entity resolution, information extraction, and speech processing. The legacy system may correspond to pre-existing web applications such as Flickr, Picasa, etc. The goal is to generate a deterministic representation of probabilistic data that optimizes the quality of the end-application built on deterministic data. We explore such a determinization problem in the context of two different data processing tasks—triggers and selection queries. We show that approaches such as thresholding or top-1 selection traditionally used for determinization lead to suboptimal performance for such applications. Instead, we develop a query-aware strategy and show its advantages over existing solutions through a comprehensive empirical evaluation over real and synthetic datasets.

IEEE 2015 : RRW—A Robust and Reversible Watermarking Technique for Relational Data


IEEE 2015 TRANSACTIONS ON IMAGE PROCESSING

Abstract : Advancement in information technology is playing an increasing role in the use of information systems comprising relational databases. These databases are used effectively in collaborative environments for information extraction; consequently, they are vulnerable to security threats concerning ownership rights and data tampering. Watermarking is advocated to enforce ownership rights over shared relational data and for providing a means for tackling data tampering. When ownership rights are enforced using watermarking, the underlying data undergoes certain modifications; as a result of which, the data quality gets compromised. Reversible watermarking is employed to ensure data quality along-with data recovery. However, such techniques are usually not robust against malicious attacks and do not provide any mechanism to selectively watermark a particular attribute by taking into account its role in knowledge discovery. Therefore, reversible watermarking is required that ensures; (i) watermark encoding and decoding by accounting for the role of all the features in knowledge discovery; and, (ii) original data recovery in the presence of active malicious attacks. In this paper, a robust and semi-blind reversible watermarking (RRW) technique for numerical relational data has been proposed that addresses the above objectives. Experimental studies prove the effectiveness of RRW against malicious attacks and show that the proposed technique outperforms existing ones.


IEEE 2015 : Secure and Practical Outsourcing of Linear Programming in Cloud Computing

IEEE 2015 TRANSACTIONS ON SERVICE COMPUTING


Abstract :Cloud Computing has great potential of providing robust computational power to the society at reduced cost. It enables customers with limited computational resources to outsource their large computation workloads to the cloud, and economically enjoy the massive computational power, bandwidth, storage, and even appropriate software that can be shared in a pay-per-use manner. Despite the tremendous benefits, security is the primary obstacle that prevents the wide adoption of this promising computing model, especially for customers when their confidential data are consumed and produced during the computation. Treating the cloud as an intrinsically insecure computing platform from the viewpoint of the cloud customers, we must design mechanisms that not only protect sensitive information by enabling computations with encrypted data, but also protect customers from malicious behaviors by enabling the validation of the computation result. Such a mechanism of general secure computation outsourcing was recently shown to be feasible in theory, but to design mechanisms that are practically efficient remains a very challenging problem. Focusing on engineering computing and optimization tasks, this paper investigates secure outsourcing of widely applicable linear programming (LP) computations. In order to achieve practical efficiency, our mechanism design explicitly decomposes the LP computation outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The resulting flexibility allows us to explore appropriate security/ efficiency tradeoff via higher-level abstraction of LP computations than the general circuit representation. In particular, by formulating private data owned by the customer for LP problem as a set of matrices and vectors, we are able to develop a set of efficient privacy-preserving problem transformation techniques, which allow customers to transform original LP problem into some arbitrary one while protecting sensitive input/output information. To validate the computation result, we further explore the fundamental duality theorem of LP computation and derive the necessary and sufficient conditions that correct result must satisfy. Such result verification mechanism is extremely efficient and incurs close-to-zero additional cost on both cloud server and customers. Extensive security analysis and experiment results show the immediate practicability of our mechanism design.

IEEE 2015 : Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset


IEEE 2015 TRANSACTIONS ON IMAGE PROCESSING

Abstract :  This paper introduces a method for face recognition across age and also a dataset containing variations of age in the wild. We use a data-driven method to address the cross-age face recognition problem, called cross-age reference coding (CARC). By leveraging a large-scale image dataset freely available on the Internet as a reference set, CARC can encode the low-level feature of a face image with an age-invariant reference space. In the retrieval phase, our method only requires a linear projection to encode the feature and thus it is highly scalable. To evaluate our method, we introduce a large-scale dataset called cross-age celebrity dataset (CACD). The dataset contains more than 160 000 images of 2,000 celebrities with age ranging from 16 to 62. Experimental results show that our method can achieve state-of-the-art performance on both CACD and the other widely used dataset for face recognition across age. To understand the difficulties of face recognition across age, we further construct a verification subset from the CACD called CACD-VS and conduct human evaluation using Amazon Mechanical Turk. CACD-VS contains 2,000 positive pairs and 2,000 negative pairs and is carefully annotated by checking both the associated image and web contents. Our experiments show that although state-of-the-art methods can achieve competitive performance compared to average human performance, majority votes of several humans can achieve much higher performance on this task. The gap between machine and human would imply possible directions for further improvement of cross-age face recognition in the future.


IEEE 2015 : Key-Aggregate Searchable Encryption (KASE) for Group Data Sharing via Cloud Storage


IEEE 2015 TRANSACTIONS ON SERVICE COMPUTING

Abstract : The capability of selectively sharing encrypted data with different users via public cloud storage may greatly ease security concerns over inadvertent data leaks in the cloud. A key challenge to designing such encryption schemes lies in the efficient management of encryption keys. The desired flexibility of sharing any group of selected documents with any group of users demands different encryption keys to be used for different documents. However, this also implies the necessity of securely distributing to users a large number of keys for both encryption and search, and those users will have to securely store the received keys, and submit an equally large number of keyword trapdoors to the cloud in order to perform search over the shared data. The implied need for secure communication, storage, and complexity clearly renders the approach impractical. In this paper, we address this practical problem, which is largely neglected in the literature, by proposing the novel concept of key aggregate searchable encryption (KASE) and instantiating the concept through a concrete KASE scheme, in which a data owner only needs to distribute a single key to a user for sharing a large number of documents, and the user only needs to submit a single trapdoor to the cloud for querying the shared documents. The security analysis and performance evaluation both confirm that our proposed schemes are provably secure and practice ally efficient.


IEEE 2015 : A Profit Maximization Scheme with Guaranteed Quality of Service in Cloud Computing


IEEE 2015 TRANSACTIONS ON SERVICE COMPUTING

Abstract : As an effective and efficient way to provide computing resources and services to customers on demand, cloud computing has become more and more popular. From cloud service providers’ perspective, profit is one of the most important considerations, and it is mainly determined by the configuration of a cloud service platform under given market demand. However, a single long-term renting scheme is usually adopted to configure a cloud platform, which cannot guarantee the service quality but leads to serious resource waste. In this paper, a double resource renting scheme is designed firstly in which short-term renting and long-term renting are combined aiming at the existing issues. This double renting scheme can effectively guarantee the quality of service of all requests and reduce the resource waste greatly. Secondly, a service system is considered as an M/M/m+D queuing model and the performance indicators that affect the profit of our double renting scheme are analyzed, e.g., the average charge, the ratio of requests that need temporary servers, and so forth. Thirdly, a profit maximization problem is formulated for the double renting scheme and the optimized configuration of a cloud platform is obtained proposed scheme with that of the single renting scheme. The results show that our scheme can not only guarantee the service quality of all requests, but also obtain more profit than the latter. by solving the profit maximization problem. Finally, a series of calculations are conducted to compare the profit of our proposed scheme with that of the single renting scheme.


IEEE 2015 : Secure and Practical Outsourcing of LinearProgramming in Cloud Computing

IEEE 2015 TRANSACTIONS ON SERVICE COMPUTING

Abstract :Cloud Computing has great potential of providing robust computational power to the society at reduced cost. It enables customers with limited computational resources to outsource their large computation workloads to the cloud, and economically enjoy the massive computational power, bandwidth, storage, and even appropriate software that can be shared in a pay-per-use manner. Despite the tremendous benefits, security is the primary obstacle that prevents the wide adoption of this promising computing model, especially for customers when their confidential data are consumed and produced during the computation. Treating the cloud as an intrinsically insecure computing platform from the viewpoint of the cloud customers, we must design mechanisms that not only protect sensitive information by enabling computations with encrypted data, but also protect customers from malicious behaviors by enabling the validation of the computation result. Such a mechanism of general secure computation outsourcing was recently shown to be feasible in theory, but to design mechanisms that are practically efficient remains a very challenging problem. Focusing on engineering computing and optimization tasks, this paper investigates secure outsourcing of widely applicable linear programming (LP) computations. In order to achieve practical efficiency, our mechanism design explicitly decomposes the LP computation outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The resulting flexibility allows us to explore appropriate security/ efficiency tradeoff via higher-level abstraction of LP computations than the general circuit representation. In particular, by formulating private data owned by the customer for LP problem as a set of matrices and vectors, we are able to develop a set of efficient privacy-preserving problem transformation techniques,which allow customers to transform original LP problem into some arbitrary one while protecting sensitive input/output information. To validate the computation result, we further explore the fundamental duality theorem of LP computation and derive the necessary and sufficient conditions that correct result must satisfy. Such result verification mechanism is extremely efficient and incurs close-to-zero additional cost on both cloud server and customers. Extensive security analysis and experiment results show the immediate practicability of our mechanism design.


Tuesday, 14 July 2015

IEEE 2015 : I-sieve - An Inline High Performance Deduplication System Used in Cloud Storage

IEEE 2015 TRANSACTIONS ON SERVICE COMPUTING

 Abstract : Data deduplication is an emerging and widely employed method for current storage systems. As this technology is gradually applied in inline scenarios such as with virtual machines and cloud storage systems, this study proposes a novel deduplication architecture called I-sieve. The goal of I-sieve is to realize a high performance data sieve system based on iSCSI in the cloud storage system. We also design the corresponding index and mapping tables and present a multi-level cache using a solid state drive to reduce RAM consumption and to optimize lookup performance. A prototype of I-sieve is implemented based on the open source iSCSI target, and many experiments have been conducted driven by virtual machine images and testing tools. The evaluation results show excellent deduplication and foreground performance.More importantly, I-sieve can co-exist with the existing deduplication systems as long as they support the iSCSI protocol.

IEEE 2023: WEB SECURITY OR CYBER CRIME

  IEEE 2023:   Machine Learning and Software-Defined Networking to Detect DDoS Attacks in IOT Networks Abstract:   In an era marked by the r...