Friday, 12 July 2013

IEEE 2013: Privacy Preserving Delegated Access Control in Public Clouds


Technology- Available in Java and Dot Net

Abstract—Current approaches to enforce fine-grained access control on confidential data hosted in the cloud are based on fine-grained encryption of the data. Under such approaches, data owners are in charge of encrypting the data before uploading them on the cloud and re-encrypting the data whenever user credentials or authorization policies change. Data owners thus incur high communication and computation costs. A better approach should delegate the enforcement of fine-grained access control to the cloud, so to minimize the overhead at the data owners, while assuring data confidentiality from the cloud. We propose an approach, based on two layers of encryption, that addresses such requirement. Under our approach, the data owner performs a coarse-grained encryption, whereas the cloud performs a fine-grained encryption on top of the owner encrypted data. A challenging issue is how to decompose access control policies (ACPs) such that the two layer encryption can be performed. We show that this problem is NP-complete and propose novel optimization algorithms. We utilize an efficient group key management scheme that supports expressive ACPs. Our system assures the confidentiality of the data and preserves the privacy of users from the cloud while delegating most of the access control enforcement to the cloud.

Index Terms—Privacy, Identity, Cloud Computing, Policy Decomposition, Encryption, Access Control


IEEE 2013: Privacy-Preserving Public Auditing for Secure Cloud Storage



IEEE TRANSACTIONS ON CLOUD COMPUTING YEAR 2013


Technology - Available in Java and Dot Net


Abstract—Using Cloud Storage, users can remotely store their data and enjoy the on-demand high quality applications and services from a shared pool of configurable computing resources, without the burden of local data storage and maintenance. However, the fact that users no longer have physical possession of the outsourced data makes the data integrity protection in Cloud Computing a formidable task, especially for users with constrained computing resources. Moreover, users should be able to just use the cloud storage as if it is local, without worrying about the need to verify its integrity. Thus, enabling public auditability for cloud storage is of critical importance so that users can resort to a third party auditor (TPA) to check the integrity of outsourced data and be worry-free. To securely introduce an effective TPA, the auditing process should bring in no new vulnerabilities towards user data privacy, and introduce no additional online burden to user. In this paper, we propose a secure cloud storage system supporting privacy-preserving public auditing. We further extend our result to enable the TPA to perform audits for multiple users simultaneously and efficiently. Extensive security and performance analysis show the proposed schemes are provably secure and highly efficient.

Index Terms—Data storage, privacy-preserving, public auditability, cryptographic protocols, cloud computing.