Wednesday, 24 July 2013

IEEE 2013: On Quality of Monitoring for Multi-channel Wireless Infrastructure Networks


Technology- Available in Java and Dot Net

Abstract—Passive monitoring utilizing distributed wireless sniffers is an effective technique to monitor activities in wireless infrastructure networks for fault diagnosis, resource management and critical path analysis. In this paper, we introduce a quality of monitoring (QoM) metric defined by the expected number of active users monitored, and investigate the problem of maximizing QoM by judiciously assigning sniffers to channels based on the knowledge of user activities in a multi-channel wireless network. Two types of capture models are considered. The user-centric model assumes frame-level capturing capability of sniffers such that the activities of different users can be distinguished while the sniffer-centric model only utilizes the binary channel information (active or not) at a sniffer. For the user-centric model, we show that the implied optimization problem is NP-hard, but a constant approximation ratio can be attained via polynomial complexity algorithms. For the sniffer-centric model, we devise stochastic inference schemes to transform the problem into the user-centric domain, where we are able to apply our polynomial approximation algorithms. The effectiveness of our proposed schemes and algorithms is further evaluated using both synthetic data as well as real-world traces from an operational WLAN.

IEEE 2013: Optimal Multicast Capacity and Delay Tradeoffs in MANETs


Technology- Available in Java and Dot Net

Abstract—In this paper, we give a global perspective of multicast capacity and delay analysis in Mobile Ad Hoc Networks (MANETs). Specifically, we consider four node mobility models: (1) two-dimensional i.i.d. mobility, (2) two-dimensional hybrid random walk, (3) one-dimensional i.i.d. mobility, and (4) one-dimensional hybrid random walk. Two mobility time-scales are investigated in this paper: (i)  Fast mobility where node mobility is at the same time-scale as data transmissions; (ii) Slow mobility where node mobility is assumed  to occur at a much slower time-scale than data transmissions. Given a delay constraint D, we first characterize the optimal multicast capacity for each of the eight types of mobility models, and then we develop a scheme that can achieve a capacity-delay tradeoff close to the upper bound up to a logarithmic factor. In addition, we also study heterogeneous networks with infrastructure support.