Monday, 18 November 2013

IEEE 2013: Facilitating Document Annotation using Content and Querying Value

IEEE 2013 Transactions on Knowledge and Data Engineering

Technology - Available in Java 

Abstract—A large number of organizations today generate and share textual descriptions of their products, services, and actions. Such collections of textual data contain significant amount of structured information, which remains buried in the unstructured text. While information extraction algorithms facilitate the extraction of structured relations, they are often expensive and inaccurate, especially when operating on top of text that does not contain any instances of the targeted structured information. We present a novel alternative approach that facilitates the generation of the structured metadata by identifying documents that are likely to contain information of interest and this information is going to be subsequently useful for querying the database. Our approach relies on the idea that humans are more likely to add the necessary metadata during creation time, if prompted by the interface; or that it is much easier for humans (and/or algorithms) to identify the metadata when such information actually exists in the document, instead of naively prompting users to fill in forms with information that is not available in the document. As a major contribution of this paper, we present algorithms that identify structured attributes that are likely to appear within the document, by jointly utilizing the content of the text and the query workload. Our experimental evaluation shows that our approach generates superior results compared to approaches that rely only on the textual content or only on the query workload, to identify attributes of interest

IEEE 2013: Mona: Secure Multi-Owner Data Sharing for Dynamic Groups in the Cloud

IEEE 2013 Transactions on Parallel and Distributed Systems  

Technology - Available in Java

Abstract—With the character of low maintenance, cloud computing provides an economical and efficient solution for sharing group resource among cloud users. Unfortunately, sharing data in a multi owner manner while preserving data and identity privacy from an untrusted cloud is still a challenging issue, due to the frequent change of the membership. In this paper, we propose a secure multi-owner data sharing scheme, named Mona, for dynamic groups in the cloud. By leveraging group signature and dynamic broadcast encryption techniques, any cloud user can anonymously share data with others. Meanwhile, the storage overhead and encryption computation cost of our scheme are independent with the number of revoked users. In addition, we analyze the security of our scheme with rigorous proofs, and demonstrate the efficiency of our scheme in experiments.