Thursday, 29 December 2016

IEEE 2016: Secure Optimization Computation Outsourcing in Cloud Computing: A Case Study of Linear Programming

Abstract:Cloud computing enables an economically promising paradigm of computation outsourcing. However, how to protect customers confidential data processed and generated during the computation is becoming the major security concern. Focusing on engineering computing and optimization tasks, this paper investigates secure outsourcing of widely applicable linear programming (LP) computations. Our mechanism design explicitly decomposes LP computation outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The resulting flexibility allows us to explore appropriate security/efficiency tradeoff via higher-level abstraction of LP computation than the general circuit representation. Specifically, by formulating private LP problem as a set of matrices/vectors, we develop efficient privacy-preserving problem transformation techniques, which allow customers to transform the original LP into some random one while protecting sensitive input/output information. To validate the computation result, we further explore the fundamental duality theorem of LP and derive the necessary and sufficient conditions that correct results must satisfy. Such result verification mechanism is very efficient and incurs close-to-zero additional cost on both cloud server and customers. Extensive security analysis and experiment results show the immediate practicability of our mechanism design.

IEEE 2016: On Traffic-Aware Partition and Aggregation in MapReduce for Big Data Applications

Abstract:The MapReduce programming model simplifies large-scale data processing on commodity cluster by exploiting parallel map tasks and reduce tasks. Although many efforts have been made to improve the performance of MapReduce jobs, they ignore the network traffic generated in the shuffle phase, which plays a critical role in performance enhancement. Traditionally, a hash function is used to partition intermediate data among reduce tasks, which, however, is not traffic-efficient because network topology and data size associated with each key are not taken into consideration. In this paper, we study to reduce network traffic cost for a MapReduce job by designing a novel intermediate data partition scheme. Furthermore, we jointly consider the aggregator placement problem, where each aggregator can reduce merged traffic from multiple map tasks. A decomposition-based distributed algorithm is proposed to deal with the large-scale optimization problem for big data application and an online algorithm is also designed to adjust data partition and aggregation in a dynamic manner. Finally, extensive simulation results demonstrate that our proposals can significantly reduce network traffic cost under both offline and online cases.

IEEE 2016: DeyPoS: Deduplicatable Dynamic Proof of Storage for Multi-User Environments
Abstract: Dynamic Proof of Storage (PoS) is a useful cryptographic primitive that enables a user to check the integrity of out sourced files and to efficiently update the files in a cloud server. Although researchers have proposed many dynamic PoS schemes in single user environments, the problem in multi-user environments has not been investigated sufficiently. A practical multi-user cloud storage system needs the secure client-side cross-user deduplication technique, which allows a user to skip the uploading process and obtain the ownership of the files immediately, when other owners of the same files have uploaded them to the cloud server. To the best of our knowledge, none of the existing dynamic PoSs can support this technique. In this paper, we introduce the concept of deduplicatable dynamic proof of storage and propose an efficient construction called DeyPoS, to achieve dynamic PoS and secure cross-user deduplication, simultaneously. Considering the challenges of structure diversity and private tag generation, we exploit a novel tool called Homomorphic Authenticated Tree (HAT). We prove the security of our construction, and the theoretical analysis and experimental results show that our construction is efficient in practice.
IEEE 2016: Fine-Grained Two-Factor Access Control for Web-Based Cloud Computing Services
Abstract:In this paper, we introduce a new fine-grained two-factor authentication (2FA) access control system for web-based cloud computing services. Specifically, in our proposed 2FA access control system, an attribute-based access control  mechanism is implemented with the necessity of both a user secret key and a lightweight security device. As a user cannot access the system if they do not hold both, the mechanism can enhance the security of the system, especially in those scenarios where many users share the same computer for web-based cloud services. In addition, attribute-based control in the system also enables the cloud server to restrict the access to those users with the same set of attributes while preserving user privacy, i.e., the cloud server only knows that the user fulfills the required predicate, but has no idea on the exact identity of the user. Finally, we also carry out a simulation to demonstrate the practicability of our proposed 2FA system.

No comments:

Post a Comment

IEEE 2023: WEB SECURITY OR CYBER CRIME

  IEEE 2023:   Machine Learning and Software-Defined Networking to Detect DDoS Attacks in IOT Networks Abstract:   In an era marked by the r...